CHAPTER

Area of Polygons

Lesson 10.1 Area of Triangles

Identify a base and a height for each triangle.

1.

2.

For each triangle, label a base with the letter b and a height with the letter h.

3.

4.

5.

6.

Find the area of each triangle.

7.

8.

The area of each triangle is 96 square centimeters. Find the height.

9.

10.

The area of each triangle is 135 square yards. Find the base.

11.

Solve. Show your work.

13. Triangle PQR is a section of a ball field. Find the area of triangle PQR.

14. The area of triangle *AEC* is 28 square inches. Find the area of the unshaded region of rectangle *ABCD*.

15. Rectangle *EFGH* is divided into six identical rectangles. Find the area of the shaded region.

16. Triangle XYZ is a right triangle. Triangle WXY is an isosceles triangle. Find the area of triangle WXY.

17. Figure *EFGH* is a rectangle. Point *M* is the mid-point of \overline{FG} . If EF = FM, what is the area of triangle *EMN*?

Solve.

18. The coordinates of the vertices of a triangle are A (6, 1), B (1, 1), and C (1, 5). Find the area of triangle ABC.

19. The coordinates of the vertices of a triangle are P(-4, -5), Q(-6, -1), and R(2, -1). Find the area of triangle PQR.

20. The coordinates of the vertices of a triangle are X (8, 4), Y (1, 0), and Z (1, 6). Find the area of triangle XYZ.

21. The coordinates of the vertices of a triangle are D(-5, 3), E(-5, -2), and F(4, -1). Find the area of triangle *DEF*.

22. The coordinates of the vertices of a triangle are L(-9, 5), M(-3, 0), and N(1, 0). Find the area of triangle LMN. (Hint: Draw a rectangle around triangle LMN.)

23. The coordinates of the vertices of a triangle are G(-4, -3), H(2, 2), and K(5, 2). Find the area of triangle GHK.

Solve. Show your work.

24. Figure *DEFGHK* is made up of two squares and a triangle. The areas of the squares are 144 square inches and 64 square inches. Find the area of the figure.

25. Square *PQRS* has a perimeter of 160 inches. Point *M* is the midpoint of \overline{QR} , and point *N* is the midpoint of \overline{SR} . Find the area of triangle *PMN*.

26. A right triangle has a height of 16 inches and a base of 12 inches. Four such triangles are arranged to form a large square with a small square at the center, as shown. Find the side length of the larger square.

2. a) 40; 30; 10

- **b)** 45 centimeters
- c) 7 minutes
- d) 12 minutes
- e) 5 centimeters per minute
- **3. a)** 80; 110; 140

- **b)** \$65
- **c)** 2.5 hours
- **d)** $95 \div 2.5 = 38$ \$38 per hour
- **e)** *C* ≥ 20

Brain @ Work

1. a)

b) Area of $ABCD = \frac{1 \cdot 2}{2} \cdot 2 = 2 \text{ cm}^2$ Area of $EFGH = \frac{1 \cdot 2}{2} \cdot 2 = 8 \text{ cm}^2$

Area of JKMN =
$$\frac{3 \cdot 6}{2} \cdot 2 = 18 \text{ cm}^2$$

c) The area of figure ABCD is 2 times the square of 1.

The area of figure *EFGH* is 2 times the square of 2.

The area of figure *JKMN* is 2 times the square of 3.

$$1^2 \times 2 = 2$$

$$2^2 \times 2 = 8$$

$$3^2 \times 2 = 18$$

Chapter 10

Lesson 10.1

- **1.** Answers vary. Sample: base: *AB*; height: *AC*
- **2.** Answers vary. Sample: base: *PR*; height: *QT*
- 3. Answers vary. Sample:

4. Answers vary. Sample:

5. Answers vary. Sample:

7.
$$\frac{1}{2} \cdot 14 \cdot 8 = 56$$
 square inches

8.
$$\frac{1}{2} \cdot 7 \cdot 18 = 63$$
 square centimeters

9.
$$\frac{2}{16}$$
 = 12 centimeters
10. $\frac{96 \cdot 2}{8}$ = 24 centimeters
11. $\frac{135 \cdot 2}{15}$ = 18 yards
12. $\frac{135 \cdot 2}{27}$ = 10 yards

10.
$$\frac{96 \cdot 2}{8}$$
 = 24 centimeters

11.
$$\frac{135 \cdot 2}{15} = 18$$
 yards

12.
$$\frac{135 \cdot 2}{27} = 10$$
 yards

13.
$$\frac{1}{2} \cdot 26 \cdot 12 = 156$$
 square feet

14.
$$28 \cdot 3 = 84$$
 square inches

15. Base of the shaded region
=
$$96 \div 3 = 32$$
 in.
Area of the shaded region
= $\frac{1}{2} \cdot 32 \cdot 16 = 256$ square inches

16. Area of
$$XYZ = \frac{1}{2} \cdot 18 \cdot 12$$

= 108 in.²
Area of $WZY = \frac{1}{2} \cdot 12 \cdot (18 - 13)$
= 30 in.²

Area of
$$WXY = 108 - 30$$

= 78 square inches

OR
Area of
$$WXY = \frac{1}{2} \cdot 13 \cdot 12$$
= 78 square inches

$$= 78 \text{ square}$$
17. $EN = 9 \cdot 2 - 12 = 6 \text{ in.}$
Area of triangle EMN

$$= \frac{1}{2} \cdot 6 \cdot 9$$
= 27 square inches

18.

$$\frac{1}{2} \cdot 5 \cdot 4 = 10$$
 square units

19.

$$\frac{1}{2} \cdot 8 \cdot 4 = 16$$
 square units

20.

$$\frac{1}{2} \cdot 6 \cdot 7 = 21$$
 square units

21.

$$\frac{1}{2} \cdot 5 \cdot 9 = 22.5$$
 square units

22.

$$\frac{1}{2} \cdot 4 \cdot 5 = 10$$
 square units

23.

Area = $\frac{1}{2} \cdot 3 \cdot 5 = 7.5$ square units

24. Base of triangle $HKM = \sqrt{64} = 8$ in. Height of triangle $HKM = \sqrt{144} - 8 = 4$ in. Area of triangle $HKM = \frac{1}{2} \cdot 8 \cdot 4 = 16$ in.² Area of the figure

= 144 + 64 + 16

= 224 square inches

25. Length of 1 side:

 $160 \div 4 = 40 \text{ in.}$

By observation, triangles PQM and NPS together make up $\frac{1}{2}$ of the square, and triangle MNR make up $\frac{1}{8}$ of the square.

$$1 - \frac{1}{2} - \frac{1}{8} = \frac{8}{8} - \frac{4}{8} - \frac{1}{8} = \frac{3}{8}$$

So, the area of triangle *PMN* is $\frac{3}{8}$ the area of *PQRS*.

Area of triangle PMN

$$=\frac{3}{8}\cdot 40\cdot 40$$

= 600 square inches

26. Length of the small square

= 16 - 12 = 4 in.

Area of the larger square

$$= 4\left(\frac{1}{2} \cdot 16 \cdot 12\right) + 4 \cdot 4 = 400 \text{ in.}^2$$

Side length of the larger square $= \sqrt{400} = 20$ inches

Lesson 10.2

1.

2.

3. Answers vary. Sample:

4. Answers vary. Sample:

5. $26 \cdot 18 = 468$ square inches

6. $14 \cdot 23 = 322$ square feet

7.

8.

9. $\frac{1}{2} \cdot 12(15 + 20)$ = 210 square inches

10. $\frac{1}{2} \cdot 11(14 + 18)$ = 176 square centimeters

- **11.** 207 ÷ 9 = 23 inches
- **12.** $112 \div 16 = 7$ inches
- **13.** Area = $\frac{1}{2}h(10 + 17) = 108 \text{ cm}^2$ $h = 108 \cdot 2 \div 27$ = 8 centimeters
- **14.** Area = $\frac{1}{2}h(30 + 20) = 375$ $h = 375 \cdot 2 \div 50 = 15$ feet